The Power of Nonconvex Optimization in Solving Random Quadratic Systems of Equations - Lecture 1
Offered By: Georgia Tech Research via YouTube
Course Description
Overview
Syllabus
Intro
Nonconvex optimization may be super scary
Example: solving quadratic programs is hard
Example of convex surrogate: low-rank matrix completion
Example of lifting: Max-Cut
Solving quadratic systems of equations
Motivation: a missing phase problem in imaging science
Motivation: latent variable models
Motivation: learning neural nets with quadratic activation
An equivalent view: low-rank factorization
Prior art (before our work)
A first impulse: maximum likelihood estimate
Interpretation of spectral initialization
Empirical performance of initialization (m = 12n)
Improving initialization
Iterative refinement stage: search directions
Performance guarantees of TWF (noiseless data)
Computational complexity
Numerical surprise
Stability under noisy data
Taught by
Georgia Tech Research
Related Courses
On Gradient-Based Optimization - Accelerated, Distributed, Asynchronous and StochasticSimons Institute via YouTube Optimisation - An Introduction: Professor Coralia Cartis, University of Oxford
Alan Turing Institute via YouTube Optimization in Signal Processing and Machine Learning
IEEE Signal Processing Society via YouTube Methods for L_p-L_q Minimization in Image Restoration and Regression - SIAM-IS Seminar
Society for Industrial and Applied Mathematics via YouTube Certificates of Nonnegativity and Their Applications in Theoretical Computer Science
Society for Industrial and Applied Mathematics via YouTube