YoVDO

Mathematics for Deep Neural Networks: Statistical Theory for Deep ReLU Networks - Lecture 4

Offered By: Georgia Tech Research via YouTube

Tags

Deep Neural Networks Courses Mathematics Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the mathematical foundations of deep neural networks in this lecture from the TRIAD Distinguished Lecture Series. Delve into the statistical theory behind deep ReLU networks as Johannes Schmidt-Hieber presents the fourth installment of his five-part series. Examine the specific properties of the ReLU activation function, focusing on its relationship to skipping connections and efficient polynomial approximation. Gain insights into how risk bounds can be derived for sparsely connected networks. Enhance your understanding of the theoretical underpinnings that support recent advancements in estimating the risk associated with deep ReLU networks.

Syllabus

TRIAD Distinguished Lecture Series | Johannes Schmidt-Hieber Lecture 4 (of 5)


Taught by

Georgia Tech Research

Related Courses

Sequences, Time Series and Prediction
DeepLearning.AI via Coursera
A Beginners Guide to Data Science
Udemy
Artificial Neural Networks(ANN) Made Easy
Udemy
Makine Mühendisleri için Derin Öğrenme
Udemy
Customer Analytics in Python
Udemy