Trade-off Between Optimality and Explainability in Machine Learning Models
Offered By: Toronto Machine Learning Series (TMLS) via YouTube
Course Description
Overview
Explore the critical trade-off between model explainability and accuracy in machine learning through this insightful 44-minute talk by Nima Safaei, Senior Data Scientist at Scotiabank. Delve into the challenges of using black box models in high-risk areas due to lack of explainability, and examine the two-fold nature of explainability in ML: Causal Explainability and Counterfactual Explainability. Gain a deeper understanding of Counterfactual Explainability from an optimization perspective, and learn how post-optimality analysis can be applied to machine learning models. Investigate the limitations of optimization algorithms in guaranteeing global optimum solutions and how this impacts model explainability. Engage in a critical discussion on the trade-off between explainability and accuracy during model selection, considering whether a more explainable but less accurate model is preferable to a less explainable but more accurate one.
Syllabus
Trade off between Optimality and Explainability
Taught by
Toronto Machine Learning Series (TMLS)
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent