Towards Understanding Modern Alchemy - Transformers as a Computational Model
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore the intricacies of in-context learning (ICL) in language models through a 37-minute lecture by Ekin Akyurek from MIT. Delve into the concept of in-context learning of formal languages (ICLL) as a model problem for understanding ICL. Examine how Transformers outperform recurrent and convolutional models in learning regular languages sampled from random finite automata. Discover the role of specialized "n-gram heads" in Transformers' superior performance and their potential to improve natural language modeling. Learn how incorporating these heads into neural models can enhance perplexity scores on datasets like SlimPajama. Gain insights into the computational capabilities of Transformers and their implications for advancing language model performance.
Syllabus
Towards Understanding Modern Alchemy
Taught by
Simons Institute
Related Courses
Microsoft Bot Framework and Conversation as a PlatformMicrosoft via edX Unlocking the Power of OpenAI for Startups - Microsoft for Startups
Microsoft via YouTube Improving Customer Experiences with Speech to Text and Text to Speech
Microsoft via YouTube Stanford Seminar - Deep Learning in Speech Recognition
Stanford University via YouTube Select Topics in Python: Natural Language Processing
Codio via Coursera