Towards Practical Differentially Private Convex Optimization
Offered By: IEEE via YouTube
Course Description
Overview
Explore a groundbreaking approach to differentially private convex optimization in this IEEE Symposium presentation. Delve into the Approximate Minima Perturbation algorithm, which leverages off-the-shelf optimizers without requiring hyperparameter tuning, making it ideal for practical deployment. Examine the extensive empirical evaluation of state-of-the-art algorithms for differentially private convex optimization across various benchmark and real-world datasets. Gain insights into the open-source implementations of these algorithms and their performance on nine public datasets, including four high-dimensional ones. Learn how to build useful predictive models while guaranteeing the privacy of sensitive data through differential privacy techniques in convex optimization tasks.
Syllabus
Towards Practical Differentialy Private Convex Optimization
Taught by
IEEE Symposium on Security and Privacy
Tags
Related Courses
Sensor SecurityIEEE via YouTube Tracking Ransomware End-to-end
IEEE via YouTube Cinderella - Turning Shabby X.509 Certificates into Elegant Anonymous Credentials with the Magic of Verifiable Computation
IEEE via YouTube Algorithmic Transparency via Quantitative Input Influence - Theory and Experiments with Learning Systems
IEEE via YouTube Bitcoin Over Tor Isn't a Good Idea
IEEE via YouTube