Topic Modeling Workshop for Beginners in Python
Offered By: Prodramp via YouTube
Course Description
Overview
Syllabus
- Tutorial Starts
- Topic Modeling Intro
- Workshop Environment
- Content location at GitHub
- Dataset used in this workshop
- LDA Intro
- Topic Modeling Use Cases
- 6 Steps in this Workshop
- Step 1: Loading Data
- Step 2: Data Preparation
- Step 2.1: Removing Punctuation
- Step 2.2: Removing digits and word with digits
- Step 2.3: Lowercase all context
- Step 3: EDA
- Step 3.1: Word Cloud
- Step 3.2: Document Term Matrix
- Step 4: Data Modeling
- Step 4.1: Stop words removal
- Step 4.2: Creating Bigram and Trigram
- Step 4.3: Lemmatization
- Step 4.4: Tokenization
- Step 5: LDA Topic Modeling
- Step 6: Topic Modeling Performance and analysis
- Step 6.1: Topic visualization
- Step 6.2: Coherence Score
- Saving notebook to GitHub
- Recap
Taught by
Prodramp
Related Courses
Data Wrangling with MongoDBMongoDB via Udacity Getting and Cleaning Data
Johns Hopkins University via Coursera 软件包在流行病学研究中的应用 Using software apps in epidemiological research
Peking University via Coursera Creating an Analytical Dataset
Udacity Implementing ETL with SQL Server Integration Services
Microsoft via edX