YoVDO

Improving Energy Efficiency and Robustness of tinyML Computer Vision Using Log-Gradient Input Images

Offered By: tinyML via YouTube

Tags

TinyML Courses Machine Learning Courses Computer Vision Courses Neural Networks Courses Embedded Systems Courses Microcontrollers Courses Image Processing Courses Energy Efficiency Courses

Course Description

Overview

Explore cutting-edge research on enhancing energy efficiency and robustness in tinyML computer vision applications through a 25-minute talk from the tinyML Research Symposium 2022. Delve into Qianyun LU's presentation on utilizing log-gradient input images to improve CV pipelines for microcontrollers. Learn about conventional CV pipelines, the process of computing log from RAW images, and gain intuition on energy breakdowns. Discover insights from CNN experiments, dataset considerations, and architecture search using UNAS for microcontrollers. Examine the impact on robustness to illumination changes and grasp key takeaways in this comprehensive overview of innovative tinyML techniques.

Syllabus

Intro
Conventional computer vision (CV) pipeline
Compute log from RAW
Intuition
Energy breakdown of pipelines
Overview of CNN experiments
Datasets
Architecture search: UNAS for microcontrollers
Robustness to illumination change
Summary


Taught by

tinyML

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
Good Brain, Bad Brain: Basics
University of Birmingham via FutureLearn
Statistical Learning with R
Stanford University via edX
Machine Learning 1—Supervised Learning
Brown University via Udacity
Fundamentals of Neuroscience, Part 2: Neurons and Networks
Harvard University via edX