YoVDO

Putting AI on a Diet: TinyML and Efficient Deep Learning

Offered By: tinyML via YouTube

Tags

TinyML Courses Computer Vision Courses Neural Architecture Search Courses Model Compression Courses

Course Description

Overview

Explore cutting-edge techniques for efficient deep learning and TinyML in this plenary talk from tinyML Asia 2021. Discover how to put AI on a diet as MIT EECS Assistant Professor Song Han presents innovative approaches to model compression, neural architecture search, and new design primitives. Learn about MCUNet, which enables ImageNet-scale inference on micro-controllers with only 1MB of Flash, and the Once-for-All Network, an elastic neural architecture search method adaptable to various hardware constraints. Gain insights into advanced primitives for video understanding and point cloud recognition, including award-winning solutions from low-power computer vision challenges. Understand how these TinyML techniques can make AI greener, faster, and more accessible, addressing the global silicon shortage and enabling practical deployment of AI applications across various domains.

Syllabus

Intro
Today's Al is too Big
Deep Compression
Pruning & Sparsity
Once-for-All Network: Roofline Analysis
OFA Designs Light-weight Model, Bring Alto Mobile Devices
NAAS: Neural Accelerator Architecture Search
Application Specific Optimizations
TinyML for Video Recognition
TinyML for Point Cloud & LIDAR Processing
SpAtten: Sparse Attention Accelerator
TinyML for Natural Language Processing
Tiny Transfer Learning


Taught by

tinyML

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera
Introduction to Computer Vision
Georgia Institute of Technology via Udacity