Time Evolution on the Information Lattice and Slow Growth of Number Entropy in L-Bit Models
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore the intricacies of quantum matter stability in a 34-minute lecture on time evolution and entropy growth in l-bit models. Delve into the complex world of many-body quantum systems and their coherent time evolution, focusing on the slow growth of number entropy in information lattices. Learn about cutting-edge concepts in non-equilibrium physics, including Many-body localization (MBL), Floquet MBL, Dynamical Freezing, and Hilbert Space Fragmentation. Gain insights into the interdisciplinary nature of this research, drawing from Condensed Matter Physics, Statistical Mechanics, Quantum Field Theory, and advanced Mathematics. Understand the potential applications in quantum technologies and the importance of stable quantum device operation. This lecture, presented by Jens at the International Centre for Theoretical Sciences, is part of a comprehensive program on the stability of quantum matter in and out of equilibrium at various scales.
Syllabus
Time evolution on the information lattice and slow growth of number entropy in l-bit models by Jens.
Taught by
International Centre for Theoretical Sciences
Related Courses
Statistical Mechanics: Algorithms and ComputationsÉcole normale supérieure via Coursera Physics of Materials
Indian Institute of Technology Madras via Swayam From Atoms to Materials: Predictive Theory and Simulations
Purdue University via edX Statistical Mechanics
Indian Institute of Technology Madras via Swayam Thermodynamics: Classical To Statistical
Indian Institute of Technology Guwahati via Swayam