YoVDO

Probabilistic Programming in Python

Offered By: EuroPython Conference via YouTube

Tags

EuroPython Courses Data Science Courses Python Courses Bayesian Statistics Courses Quantitative Finance Courses Statistical Modeling Courses Cognitive Sciences Courses Probabilistic Programming Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore probabilistic programming in Python through this EuroPython 2014 conference talk by Thomas Wiecki. Gain insights into Bayesian statistics and learn how to specify and estimate probabilistic models using PyMC3. Discover the power of next-generation sampling algorithms, intuitive model specification syntax, and just-in-time compilation for efficient large-scale probabilistic modeling. Delve into topics such as machine learning, simulation, maximum likelihood estimation, Markov Chain Monte Carlo sampling, and hierarchical models. Understand how probabilistic programming can be applied across various scientific fields, including cognitive science, data science, and quantitative finance.

Syllabus

Introduction
Machine Learning
Open Box
Be Testing
Simulation
Maximum likelihood estimate
Frequent of Statistics
Based Formula
Random Variable
Chain Monte Carlo
MCMC Sampling
High MC3
Uncooled Model
Fully Pooled Model
Partially Hierarchical Model
PartialHierarchical Model


Taught by

EuroPython Conference

Related Courses

Introduction to Probability, Statistics, and Random Processes
University of Massachusetts Amherst via Independent
Bayesian Statistics
Duke University via Coursera
Bayesian Statistics: From Concept to Data Analysis
University of California, Santa Cruz via Coursera
Improving your statistical inferences
Eindhoven University of Technology via Coursera
Bayesian Statistics: Techniques and Models
University of California, Santa Cruz via Coursera