YoVDO

On the Hardness of Learning Under Symmetries

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Machine Learning Courses Algorithms Courses Data Structures Courses Computational Complexity Courses Computational Mathematics Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 47-minute conference talk presented by Thien Le from the Massachusetts Institute of Technology at IPAM's EnCORE Workshop on Computational vs Statistical Gaps in Learning and Optimization. Delve into the topic "On the hardness of learning under symmetries" as Le discusses the challenges and complexities associated with machine learning algorithms when dealing with symmetrical data structures. Gain insights into the computational and statistical aspects of this problem, and understand how symmetries can impact the learning process. Recorded on February 27, 2024, at the Institute for Pure & Applied Mathematics (IPAM) at UCLA, this presentation offers valuable knowledge for researchers and practitioners in the fields of machine learning, optimization, and computational mathematics.

Syllabus

Thien Le - On the hardness of learning under symmetries - IPAM at UCLA


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent