The Total Variation Wasserstein Problem - A New Derivation of the Euler-Lagrange Equations
Offered By: Conference GSI via YouTube
Course Description
Overview
Explore a novel approach to deriving the Euler-Lagrange equations for the Total Variation Wasserstein problem in this 22-minute conference talk from GSI. Delve into the mathematical intricacies of this optimization problem, gaining insights into its formulation and solution methods. Enhance your understanding of variational calculus and its applications in optimal transport theory.
Syllabus
The Total Variation Wasserstein problem a new derivation of the Euler Lagrange equations
Taught by
Conference GSI
Related Courses
An Introduction to Functional AnalysisÉcole Centrale Paris via Coursera The Finite Element Method for Problems in Physics
University of Michigan via Coursera Introduction to the Theory of Distributions and Applications
University of Pavia via iversity Методы и инструменты системного проектирования
Moscow Institute of Physics and Technology via Coursera Product Design Using Value Engineering
Indian Institute of Technology Roorkee via Swayam