The SDP Relaxation for Max-Cut - Lecture 19b of CS Theory Toolkit
Offered By: Ryan O'Donnell via YouTube
Course Description
Overview
Explore the SDP relaxation technique for the Max-Cut problem in this graduate-level lecture from Carnegie Mellon University's "CS Theory Toolkit" course. Learn how to transform an exact quadratic program into a linear program with infinite constraints, and discover how this relaxation leads to a semidefinite program solvable by the Ellipsoid Algorithm. Delve into advanced topics in theoretical computer science, drawing from resources like "Geometric Algorithms and Combinatorial Optimization" and "Laplacian eigenvalues and the maximum cut problem." Taught by Professor Ryan O'Donnell, this 33-minute lecture covers key concepts including linear programming, the Ellipsoid Algorithm, and semidefinite programming, providing essential knowledge for research in theoretical computer science.
Syllabus
Intro
Linear Programming
Standard Linear Programming
Smart Idea
Ellipsoid Algorithm
Inequality
SDP
The LPE
Taught by
Ryan O'Donnell
Related Courses
Automata TheoryStanford University via edX Intro to Theoretical Computer Science
Udacity Computing: Art, Magic, Science
ETH Zurich via edX 理论计算机科学基础 | Introduction to Theoretical Computer Science
Peking University via edX Quantitative Formal Modeling and Worst-Case Performance Analysis
EIT Digital via Coursera