YoVDO

The Risks of Excluding the Disengaged From Your Dataset

Offered By: Toronto Machine Learning Series (TMLS) via YouTube

Tags

Data Analysis Courses Big Data Courses Machine Learning Courses Predictive Analytics Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the critical importance of inclusive datasets in machine learning analysis through this 38-minute conference talk from the Toronto Machine Learning Series. Discover how excluding disengaged populations can significantly impact the reliability of predictions in various fields, including elections, consumer demand, and pandemic trajectories. Learn from Danielle Goldfarb, Vice President and General Manager of Global Affairs, Economics and Public Policy at RIWI, as she delves into the potential pitfalls of relying solely on big data without considering the inclusivity of the underlying information. Gain valuable insights on how to ensure your datasets are robust and representative, ultimately leading to more accurate and meaningful predictions in your machine learning projects.

Syllabus

The Risks of Excluding the Disengaged From your Dataset


Taught by

Toronto Machine Learning Series (TMLS)

Related Courses

Social Network Analysis
University of Michigan via Coursera
Intro to Algorithms
Udacity
Data Analysis
Johns Hopkins University via Coursera
Computing for Data Analysis
Johns Hopkins University via Coursera
Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX