The Computational Theory of Riemann-Hilbert Problems - Lecture 1
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore the computational theory of Riemann-Hilbert problems in this comprehensive lecture by Thomas Trogdon at the International Centre for Theoretical Sciences. Delve into key concepts including simple Riemann-Hilbert problems, function definitions, properties of Psi, Cauchy integrals, and analytical functions. Examine important facts and classifications related to the topic. Part of a broader program on integrable systems in mathematics, condensed matter, and statistical physics, this lecture provides a solid foundation for understanding the computational aspects of Riemann-Hilbert problems and their applications in various fields of mathematics and physics.
Syllabus
Integrable systems in Mathematics, Condensed Matter and Statistical Physics
The computational theory of Riemann-Hilbert problems Lecture 1
Outline
A simple Riemann-Hilbert problem
Goal
Function Define
Properties of Psi
Cauchy integrals
First question: When does this give an analytic function off of Gamma?
Fact
Another fact
Class 1
Fact
Taught by
International Centre for Theoretical Sciences
Related Courses
Special RelativityBrilliant Квантовая механика. Часть 1. Принципы квантовой механики
National Research Nuclear University MEPhI via edX Теория функций комплексного переменного
Higher School of Economics via Coursera Линейная алгебра: матрицы и отображения
Novosibirsk State University via Coursera Уравнения математической физики. Часть 1
National Research Nuclear University MEPhI via edX