YoVDO

The Computational Theory of Riemann-Hilbert Problems - Lecture 1

Offered By: International Centre for Theoretical Sciences via YouTube

Tags

Mathematical Physics Courses Complex Analysis Courses Integrable Systems Courses

Course Description

Overview

Explore the computational theory of Riemann-Hilbert problems in this comprehensive lecture by Thomas Trogdon at the International Centre for Theoretical Sciences. Delve into key concepts including simple Riemann-Hilbert problems, function definitions, properties of Psi, Cauchy integrals, and analytical functions. Examine important facts and classifications related to the topic. Part of a broader program on integrable systems in mathematics, condensed matter, and statistical physics, this lecture provides a solid foundation for understanding the computational aspects of Riemann-Hilbert problems and their applications in various fields of mathematics and physics.

Syllabus

Integrable systems in Mathematics, Condensed Matter and Statistical Physics
The computational theory of Riemann-Hilbert problems Lecture 1
Outline
A simple Riemann-Hilbert problem
Goal
Function Define
Properties of Psi
Cauchy integrals
First question: When does this give an analytic function off of Gamma?
Fact
Another fact
Class 1
Fact


Taught by

International Centre for Theoretical Sciences

Related Courses

Special Relativity
Brilliant
Квантовая механика. Часть 1. Принципы квантовой механики
National Research Nuclear University MEPhI via edX
Теория функций комплексного переменного
Higher School of Economics via Coursera
Линейная алгебра: матрицы и отображения
Novosibirsk State University via Coursera
Уравнения математической физики. Часть 1
National Research Nuclear University MEPhI via edX