Tech Talk - Top Tuning Tips for Spark 3.0 and Delta Lake on Databricks
Offered By: Databricks via YouTube
Course Description
Overview
Discover top tuning tips for Apache Spark 3.0 and Delta Lake on Databricks in this informative tech talk. Learn when to use specific join operations, how to select appropriate machine sizes, techniques to accelerate merge operations, and methods to streamline your jobs. Explore key topics including the importance of using the latest DBR version, selecting optimal join strategies, leveraging Apache Spark 3.0 and Adaptive Query Execution (AQE), partition pruning, data skipping, Z-ordering, Databricks Delta Lake and statistics, merge optimization, and choosing suitable instance types. Gain insights from experienced Databricks solutions architects and developer advocates as they share their expertise on enhancing big data processing performance and reliability using Apache Spark and Delta Lake.
Syllabus
Welcome
Use the latest version of DBR
Picking the best join strategy
Use Apache Spark 3.0 and AQE
Partition Pruning
Data Skipping
Z-Ordering
Databricks Delta Lake and Stats
Optimizing Merges
Picking good instance types
Taught by
Databricks
Related Courses
CS115x: Advanced Apache Spark for Data Science and Data EngineeringUniversity of California, Berkeley via edX Big Data Analytics
University of Adelaide via edX Big Data Essentials: HDFS, MapReduce and Spark RDD
Yandex via Coursera Big Data Analysis: Hive, Spark SQL, DataFrames and GraphFrames
Yandex via Coursera Introduction to Apache Spark and AWS
University of London International Programmes via Coursera