YoVDO

Targeting Humanitarian Aid with Machine Learning and Digital Data

Offered By: Paul G. Allen School via YouTube

Tags

Machine Learning Courses Data-Driven Decision Making Courses Humanitarian Aid Courses Satellite Imagery Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore how machine learning and digital data can revolutionize humanitarian aid targeting in a thought-provoking talk by Emily Aiken from UC Berkeley. Delve into the challenges of allocating aid in low- and middle-income countries, where limited data on poverty and vulnerability often hinder effective distribution. Discover how innovative "big" digital data sources, including satellite imagery, mobile phone data, and financial service provider information, combined with advanced machine learning techniques, can enhance the accuracy of aid program targeting. Examine empirical results from case studies in Togo and Bangladesh, showcasing the potential of these data-driven and algorithmic approaches. Consider the broader implications of these methods on fairness, privacy, transparency, and community dynamics in humanitarian aid allocation. Gain insights from Aiken's research as a PhD candidate at UC Berkeley's School of Information, where she focuses on applying novel algorithms and digital data sources to social protection programs.

Syllabus

Targeting humanitarian aid with machine learning and digital data—Emily Aiken (Berkeley)


Taught by

Paul G. Allen School

Related Courses

Spatial Analysis and Satellite Imagery in a GIS
University of Toronto via Coursera
Remote Sensing and GIS
Indian Institute of Technology Guwahati via Swayam
Riego localizado inteligente: ciencia y tecnología
Universidad Politécnica de Madrid via Miríadax
Remote Sensing Essentials
Indian Institute of Technology Roorkee via Swayam
Deep Learning 101: Detecting Ships from Satellite Imagery
Coursera Project Network via Coursera