Systems Engineering in Machine Learning - Navigating Low-Level Challenges
Offered By: MLOps.community via YouTube
Course Description
Overview
Syllabus
[] Andrew's preferred coffee
[] Introduction to Andrew Dye
[] Takeaways
[] Huge shoutout to our sponsors UnionML and UnionAI!
[] Andrew's background
[] Andrew's learning curve
[] Bridging the gap between firmware space and MLOps
[] In connection with Pytorch team
[] Things that should have learned sooner
[] Type of scale Andrew works on
[] Distributed training at Meta
[] Managing the huge search space
[] Execution patterns programs
[] Non-ML engineers dealing with ML engineers having the same skill set
[] Pace rapid change adoptation
[] Consensus challenges
[] Abstractions making sense now
[] Comparing to others
[] General principles in UnionAI tooling
[] Seeing the future
[] Inter-task checkpointing
[] Combining functionality with use cases
[] Wrap up
Taught by
MLOps.community
Related Courses
Custom and Distributed Training with TensorFlowDeepLearning.AI via Coursera Architecting Production-ready ML Models Using Google Cloud ML Engine
Pluralsight Building End-to-end Machine Learning Workflows with Kubeflow
Pluralsight Deploying PyTorch Models in Production: PyTorch Playbook
Pluralsight Inside TensorFlow
TensorFlow via YouTube