Sublinear Time Algorithms for Max-Cut Approximation on Expander Graphs
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a 32-minute lecture on sublinear time algorithms for approximating max-cut problems on expander graphs. Delve into how random walks on graphs reveal crucial information, particularly in the context of big data and large-scale graph analysis. Learn about the application of random walks in sublinear time algorithms to surpass the trivial 1/2 approximation for max-cut on expanding and clusterable graphs. Gain insights into the intersection of spectral methods and algorithmic design, with a focus on how these techniques can be leveraged to solve complex graph problems efficiently. Suitable for students and researchers interested in spectral methods, this talk by Akash Kumar from IIT Bombay requires minimal background knowledge and presents a standalone narrative on the subject.
Syllabus
Sublinear time algorithms for better than 1/2 approximation algorithms for max-cut on expanders
Taught by
Simons Institute
Related Courses
Aplicaciones de la teoría de grafos a la vida realMiríadax Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X] Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX Genome Sequencing (Bioinformatics II)
University of California, San Diego via Coursera Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer