YoVDO

Streaming Euclidean K-Median and K-Means With O-Log N Space

Offered By: Simons Institute via YouTube

Tags

Algorithm Design Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a lecture on streaming algorithms for Euclidean k-median and k-means clustering that achieves groundbreaking space efficiency. Delve into the innovative approach presented by Samson Zhou from Texas A&M University, which breaks the long-standing Omega(log(n Delta)) memory barrier. Learn about the novel algorithm that provides a (1+epsilon)-approximation for the more general (k,z)-clustering problem using only ~O(dk/varepsilon^2)*(2^{z log z})*min(1/epsilon^z, k)*poly(log log(n Delta)) words of memory. Discover the implications of this advancement for data stream clustering and its potential impact on various techniques such as coresets, merge-and-reduce framework, bicriteria approximation, and sensitivity sampling. Gain insights into the collaborative work with Vincent Cohen-Addad and David P. Woodruff, which pushes the boundaries of space-efficient clustering algorithms.

Syllabus

Streaming Euclidean k-median and k-means with o(log n) Space


Taught by

Simons Institute

Related Courses

Natural Language Processing
Columbia University via Coursera
Intro to Algorithms
Udacity
Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera
Paradigms of Computer Programming
Université catholique de Louvain via edX
Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX