Stewart Calculus - Vector Calculus
Offered By: Jonathan Walters via YouTube
Course Description
Overview
Syllabus
Line Integrals of Scalar Functions: Evaluate Line Integrals : Contour Integrals.
Line Integral of a Vector Field :: F(x,y,z) = sin(x) i + cos(y) j + xz k.
Fundamental Theorem for Line Integrals :: Conservative Vector Field Line Integral.
Green's Theorem Examples.
Scalar Surface Integral ∫∫ x^2yz dS where S is part of the plane z=1+2x+3y.
Scalar Surface Integral ∫∫xy dS, S is the triangular region (1,0,0), (0,2,0), (0,0,2).
Evaluate the Surface Integral over the Helicoid r(u,v) = ucos v i + usin v j + v k.
Find the Flux of the Vector Field F = x i + y j + z^4 k Through the Cone with Downward Orientation.
Use Stokes' Theorem to Evaluate the Surface Integral.
Divergence Theorem:: Find the flux of F = ( cos(z) + xy^2, xexp(-z), sin(y)+x^2z ).
Taught by
Jonathan Walters
Related Courses
Flight Vehicle AerodynamicsMassachusetts Institute of Technology via edX 電磁學(Electromagnetics)
National Taiwan University via Coursera Mécanique de Newton
École Polytechnique Fédérale de Lausanne via Coursera Электростатика и магнитостатика
Moscow Institute of Physics and Technology via Coursera Mechanik I
RWTH Aachen University via edX