Stanford Seminar - Computing with Physical Systems
Offered By: Stanford University via YouTube
Course Description
Overview
Explore the cutting-edge field of analog computing and Physical Neural Networks in this Stanford seminar presented by Peter McMahon from Cornell University. Delve into the concept of training complex physical systems to perform as neural networks for machine learning tasks, with experimental demonstrations across mechanical, electronic, and photonic systems. Discover the potential applications of this technology, including large-scale photonic accelerators for server-side machine learning, smart sensors for pre-processing signals, and new types of quantum neural networks. Learn about the limitations of conventional digital computing and the renaissance of analog computing across various physical substrates. Gain insights into future research directions and the possibilities of endowing analog physical systems with unexpected functionality.
Syllabus
Stanford Seminar - Computing with Physical Systems
Taught by
Stanford Online
Tags
Related Courses
Training Quantum Neural Networks with an Unbounded Loss Function - IPAM at UCLAInstitute for Pure & Applied Mathematics (IPAM) via YouTube Panel on Quantum Machine Learning and Barren Plateaus
Simons Institute via YouTube Understanding Quantum Machine Learning Also Requires Rethinking Generalization
Institute for Pure & Applied Mathematics (IPAM) via YouTube Quantum Neural Networks: Design and Training for Quantum Learning Tasks
Simons Institute via YouTube Towards Geometric Quantum Machine Learning
Xanadu via YouTube