Democratizing Deep Learning with DeepHyper
Offered By: Scalable Parallel Computing Lab, SPCL @ ETH Zurich via YouTube
Course Description
Overview
Explore an in-depth lecture on democratizing deep learning through DeepHyper, presented by Prasanna Balaprakash at the SPCL_Bcast event. Delve into the challenges of designing high-performing deep neural network (DNN) architectures for diverse scientific datasets and discover how DeepHyper, a software package, automates this process using scalable neural architecture and hyperparameter search. Learn about recent advancements in generating DNN ensembles at scale and their application in estimating data and model uncertainties across various scientific domains. Gain insights into the potential of DeepHyper to revolutionize DNN model development for scientific and engineering applications, making deep learning more accessible and efficient.
Syllabus
Intro
Talk
Announcements
Q&A
Taught by
Scalable Parallel Computing Lab, SPCL @ ETH Zurich
Related Courses
Scientific ComputingUniversity of Washington via Coursera Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera High Performance Scientific Computing
University of Washington via Coursera Practical Numerical Methods with Python
George Washington University via Independent Julia Scientific Programming
University of Cape Town via Coursera