SpatialDependence.jl: Exploratory Spatial Data Analysis - JuliaCon 2024
Offered By: The Julia Programming Language via YouTube
Course Description
Overview
Explore the capabilities of SpatialDependence.jl for exploratory spatial data analysis in this 10-minute conference talk from JuliaCon 2024. Learn how to create and handle spatial weights matrices from polygon and point geometries, calculate spatial lags, test for spatial autocorrelation, and plot choropleth maps. Discover the package's architecture for managing spatial weight matrices and its integration with GeoInterface.jl for versatile data source compatibility. Gain insights into plotting techniques, including various classification algorithms for observations, and understand how global and local spatial autocorrelation statistics can identify clusters and similarities between geographically close observations. Get a brief, non-technical overview of the package's features and hear about the developer's experience creating it in the Julia programming language.
Syllabus
SpatialDependence.jl: exploratory spatial data analysis | Barbero | JuliaCon 2024
Taught by
The Julia Programming Language
Related Courses
Julia Scientific ProgrammingUniversity of Cape Town via Coursera Julia for Beginners in Data Science
Coursera Project Network via Coursera Linear Regression and Multiple Linear Regression in Julia
Coursera Project Network via Coursera Decision Tree and Random Forest Classification using Julia
Coursera Project Network via Coursera Logistic Regression for Classification using Julia
Coursera Project Network via Coursera