Sound Data Engineering in Rust - From Bits to DataFrames
Offered By: Databricks via YouTube
Course Description
Overview
Explore sound data engineering principles in Rust, from fundamental bits to advanced DataFrames, in this 35-minute Databricks conference talk. Dive into Spark's Data Source APIs and their optimization techniques for querying external data sources. Learn about filter push down, column pruning, and the newly introduced partial aggregate push down, which significantly improves query performance. Discover how these optimizations are implemented in JDBC and Parquet. Examine the relationship between information storage and usage, CPU utilization, and the role of Apache Arrow in data processing. Gain insights into the Rust programming language and its integration with Arrow. Watch a demo showcasing practical applications, explore who uses arrow2, and understand the benefits of Polars. Analyze benchmarks and key takeaways from the DATA+AI SUMMIT 2022 presentation on efficient data engineering practices.
Syllabus
Intro
Background
Outline
Information is both stored and used
"Read" uses 10 and CPU
CPUs sleep and run
Apache Arrow
Rust Programming Language
Arrow with Rust
Demo
Who uses arrow2
Polars
Benchmarks
In summary
DATA+AI SUMMIT 2022
Taught by
Databricks
Related Courses
内存数据库管理openHPI CS115x: Advanced Apache Spark for Data Science and Data Engineering
University of California, Berkeley via edX Processing Big Data with Azure Data Lake Analytics
Microsoft via edX Google Cloud Big Data and Machine Learning Fundamentals en Español
Google Cloud via Coursera Google Cloud Big Data and Machine Learning Fundamentals 日本語版
Google Cloud via Coursera