Solving the Last Mile Problem of Foundation Models with Data-Centric AI
Offered By: MLOps.community via YouTube
Course Description
Overview
Explore the challenges and solutions for achieving production-level accuracy with large language models in this conference talk by Alex Ratner. Learn about the "last mile" problem in deploying AI applications, particularly in enterprise settings. Discover how data-centric AI approaches can address issues such as hallucinations, data biases, and misclassification of domain-specific edge cases. Gain insights into the concept of foundation models as powerful starting points for AI development, and understand why additional steps are necessary to build robust, production-ready AI systems. Benefit from Ratner's expertise as the co-founder and CEO of Snorkel AI, and his background in developing data-centric AI techniques at Stanford University.
Syllabus
Solving the Last Mile Problem of Foundation Models with Data-Centric AI //Alex Ratner // LLM in Prod
Taught by
MLOps.community
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent