Machine Learning via Graph Signal Processing for Complex Biological Data
Offered By: Computational Genomics Summer Institute CGSI via YouTube
Course Description
Overview
Explore machine learning techniques for analyzing complex biological data through graph signal processing in this conference talk from the Computational Genomics Summer Institute. Delve into the foundations of graph signal processing and its applications in computational biology. Learn about geometric scattering for graph data analysis and data-driven learning of geometric scattering networks. Discover how these advanced techniques can be applied to complex biological datasets, potentially revolutionizing our understanding of genomic and molecular data. Gain insights into the latest research in this field, including related works on algebraic signal processing theory and its applications to biological systems.
Syllabus
Smita Krishnaswamy | Machine Learning via Graph Signal for Complex Biological Data | CGSI2023
Taught by
Computational Genomics Summer Institute CGSI
Related Courses
Aplicaciones de la teoría de grafos a la vida realMiríadax Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X] Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX Genome Sequencing (Bioinformatics II)
University of California, San Diego via Coursera Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer