Content-based Graph Reconstruction for Cold-start Item Recommendation - SIGIR 2024
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a 13-minute conference talk from SIGIR 2024 that delves into content-based graph reconstruction for cold-start item recommendation. Learn about innovative approaches presented by authors Jinri Kim, Eungi Kim, Kwangeun Yeo, Yujin Jeon, Chanwoo Kim, Sewon Lee, and Joonseok Lee as they address challenges in recommender systems. Gain insights into graph-based techniques and their application in solving the cold-start problem, a common issue in recommendation algorithms for new items with limited user interaction data.
Syllabus
SIGIR 2024 T1.4 [fp] Content-based Graph Reconstruction for Cold-start item recommendation
Taught by
Association for Computing Machinery (ACM)
Related Courses
Introduction to Data ScienceUniversity of Washington via Coursera Big Data Analytics in Healthcare
Georgia Institute of Technology via Udacity More Data Mining with Weka
University of Waikato via Independent Mining Massive Datasets
Stanford University via edX Pattern Discovery in Data Mining
University of Illinois at Urbana-Champaign via Coursera