YoVDO

AFDGCF: Adaptive Feature De-correlation Graph Collaborative Filtering for Recommendations

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

Recommender Systems Courses Data Mining Courses Machine Learning Courses Graph Theory Courses Information Retrieval Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore an innovative approach to recommendation systems in this 15-minute conference talk presented at SIGIR 2024. Delve into the concept of Adaptive Feature De-correlation Graph Collaborative Filtering (AFDGCF) for recommendations, as introduced by authors Wei Wu, Chao Wang, Dazhong Shen, Chuan Qin, Liyi Chen, and Hui Xiong. Learn how this method combines graph-based techniques with collaborative filtering to enhance recommendation accuracy. Gain insights into the adaptive feature de-correlation process and its impact on improving the quality of recommendations. Understand the potential applications of AFDGCF in various domains and its significance in advancing the field of recommendation systems.

Syllabus

SIGIR 2024 T1.4 [fp] AFDGCF: Adaptive Feature De-correlation Graph Collaborative Filtering for Rec


Taught by

Association for Computing Machinery (ACM)

Related Courses

Introduction to Data Science
University of Washington via Coursera
Big Data Analytics in Healthcare
Georgia Institute of Technology via Udacity
More Data Mining with Weka
University of Waikato via Independent
Mining Massive Datasets
Stanford University via edX
Pattern Discovery in Data Mining
University of Illinois at Urbana-Champaign via Coursera