YoVDO

Modeling User Fatigue for Sequential Recommendation - Session M3.6

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

Recommender Systems Courses Machine Learning Courses Information Retrieval Courses User Behavior Analysis Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 12-minute conference talk from the Association for Computing Machinery (ACM) that delves into modeling user fatigue for sequential recommendation systems. Learn about the innovative research conducted by authors Nian Li, Xin Ban, Cheng Ling, Chen Gao, Lantao Hu, Peng Jiang, Kun Gai, Yong Li, and Qingmin Liao. Gain insights into how user fatigue affects recommendation performance and discover potential strategies to mitigate its impact. Understand the importance of considering user behavior patterns in designing more effective and user-friendly recommendation algorithms. This presentation, part of the Users and Simulations session at SIGIR 2024, offers valuable knowledge for researchers and practitioners in the field of information retrieval and recommender systems.

Syllabus

SIGIR 2024 M3.6 [fp] Modeling User Fatigue for Sequential Recommendation


Taught by

Association for Computing Machinery (ACM)

Related Courses

Semantic Web Technologies
openHPI
أساسيات استرجاع المعلومات
Rwaq (رواق)
《gacco特別企画》Evernoteで広がるgaccoの学びスタイル (ga038)
University of Tokyo via gacco
La Web Semántica: Herramientas para la publicación y extracción efectiva de información en la Web
Pontificia Universidad Católica de Chile via Coursera
快速学习
University of Science and Technology of China via Coursera