LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search - Session M3.2
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a cutting-edge approach to personalized multi-session conversational search in this 14-minute conference talk from SIGIR 2024. Delve into the innovative LAPS (LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search) method presented by authors Hideaki Joko, Shubham Chatterjee, Andrew Ramsay, Arjen de Vries, Jeff Dalton, and Faegheh Hasibi. Gain insights into how Large Language Models (LLMs) are leveraged to enhance dialogue construction in conversational information retrieval and recommendation systems. Learn about the potential implications of this research for improving personalized search experiences across multiple user sessions.
Syllabus
SIGIR 2024 M3.2 [fp] LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session CS
Taught by
Association for Computing Machinery (ACM)
Related Courses
Semantic Web TechnologiesopenHPI أساسيات استرجاع المعلومات
Rwaq (رواق) 《gacco特別企画》Evernoteで広がるgaccoの学びスタイル (ga038)
University of Tokyo via gacco La Web Semántica: Herramientas para la publicación y extracción efectiva de información en la Web
Pontificia Universidad Católica de Chile via Coursera 快速学习
University of Science and Technology of China via Coursera