Fair Recommendations with Limited Sensitive Attributes - A Distributionally Robust Optimization Approach
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a conference talk on fair recommendations in recommender systems with limited sensitive attributes. Delve into a distributionally robust optimization approach presented by authors Tianhao Shi, Yang Zhang, Jizhi Zhang, Fuli Feng, and Xiangnan He. Learn about innovative techniques to address fairness challenges in recommendation algorithms when dealing with limited access to sensitive user information. Gain insights into the intersection of fairness, privacy, and machine learning in the context of recommender systems during this 14-minute presentation from the Association for Computing Machinery (ACM) SIGIR 2024 conference.
Syllabus
SIGIR 2024 M1.7 [fp] Fair Recommendations with Limited Sensitive Attributes
Taught by
Association for Computing Machinery (ACM)
Related Courses
Introduction to Recommender SystemsUniversity of Minnesota via Coursera Text Retrieval and Search Engines
University of Illinois at Urbana-Champaign via Coursera Machine Learning: Recommender Systems & Dimensionality Reduction
University of Washington via Coursera Java Programming: Build a Recommendation System
Duke University via Coursera Introduction to Recommender Systems: Non-Personalized and Content-Based
University of Minnesota via Coursera