Neural Passage Quality Estimation for Static Pruning - Efficiency for Search
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a 14-minute conference talk from SIGIR 2024 focused on Neural Passage Quality Estimation for Static Pruning. Delve into the research presented by authors Xuejun Chang, Debabrata Mishra, Craig Macdonald, and Sean MacAvaney as they discuss innovative approaches to improve search efficiency. Learn about the latest advancements in static pruning techniques and how neural networks are being utilized to estimate passage quality, potentially revolutionizing information retrieval systems.
Syllabus
SIGIR 2024 M1.3 [fp] Neural Passage Quality Estimation for Static Pruning
Taught by
Association for Computing Machinery (ACM)
Related Courses
Semantic Web TechnologiesopenHPI أساسيات استرجاع المعلومات
Rwaq (رواق) 《gacco特別企画》Evernoteで広がるgaccoの学びスタイル (ga038)
University of Tokyo via gacco La Web Semántica: Herramientas para la publicación y extracción efectiva de información en la Web
Pontificia Universidad Católica de Chile via Coursera 快速学习
University of Science and Technology of China via Coursera