MetaHKG: Meta Hyperbolic Learning for Few-shot Temporal Reasoning - M1.2
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a conference talk on MetaHKG, a novel approach to meta hyperbolic learning for few-shot temporal reasoning in knowledge graphs. Delve into the research presented by authors Ruijie Wang, Yutong Zhang, Jinyang Li, and others at the SIGIR 2024 conference. Learn about the innovative techniques used to enhance reasoning capabilities in knowledge graphs with limited data. Gain insights into how hyperbolic geometry is leveraged to improve temporal reasoning tasks. Understand the potential applications and implications of this research for advancing artificial intelligence and machine learning in the field of information retrieval.
Syllabus
SIGIR 2024 M1.2 [fp] MetaHKG: Meta Hyperbolic Learning for Few-shot Temporal Reasoning
Taught by
Association for Computing Machinery (ACM)
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent