Unsupervised Large Language Model Alignment for Information Retrieval via Contrastive Feedback - Lecture 1
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a 13-minute conference talk from the Association for Computing Machinery (ACM) that delves into unsupervised large language model alignment for information retrieval using contrastive feedback. Learn about the innovative approach presented by authors Qian Dong, Yiding Liu, Qingyao Ai, Zhijing Wu, Haitao Li, Yiqun Liu, Shuaiqiang Wang, Dawei Yin, and Shaoping Ma. Gain insights into how this method can potentially improve search capabilities and enhance the performance of large language models in information retrieval tasks.
Syllabus
SIGIR 2024 M1.1 [fp] Unsupervised LLM Alignment for Information Retrieval via Contrastive Feedback
Taught by
Association for Computing Machinery (ACM)
Related Courses
Semantic Web TechnologiesopenHPI أساسيات استرجاع المعلومات
Rwaq (رواق) 《gacco特別企画》Evernoteで広がるgaccoの学びスタイル (ga038)
University of Tokyo via gacco La Web Semántica: Herramientas para la publicación y extracción efectiva de información en la Web
Pontificia Universidad Católica de Chile via Coursera 快速学习
University of Science and Technology of China via Coursera