Engineering and Production Techniques for Managing Feature Drift in AI Models
Offered By: Toronto Machine Learning Series (TMLS) via YouTube
Course Description
Overview
Explore engineering and production techniques for managing feature drift in large-scale AI models and systems in this 44-minute conference talk from the Toronto Machine Learning Series. Gain insights from Sharat Singh, CEO and Chief Architect at Quadrical.ai, as he addresses the challenges of non-cyclical feature drift in business environments. Learn about gradual and sudden changes caused by agent-environment interactions, and discover actionable best practices and system implementations derived from multiple case studies. Acquire valuable knowledge on how to effectively handle the evolving nature of data in AI applications and maintain model performance over time.
Syllabus
Sharat Singh - Engineering and Production Techniques for Managing Feature d
Taught by
Toronto Machine Learning Series (TMLS)
Related Courses
内存数据库管理openHPI CS115x: Advanced Apache Spark for Data Science and Data Engineering
University of California, Berkeley via edX Processing Big Data with Azure Data Lake Analytics
Microsoft via edX Google Cloud Big Data and Machine Learning Fundamentals en Español
Google Cloud via Coursera Google Cloud Big Data and Machine Learning Fundamentals 日本語版
Google Cloud via Coursera