Set Distribution Networks - A Generative Model for Sets of Images
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a comprehensive video explanation of the paper "Set Distribution Networks: a Generative Model for Sets of Images". Delve into the novel approach of generating sets of images with shared characteristics, particularly when the number of sets is unknown and potentially infinite. Learn about the probabilistic framework and practical implementation of this generative model based on variational methods. Understand the architecture, including the set encoder, discriminator, generator, and prior. Follow the detailed breakdown of the model's components, likelihood function, loss function, and optimization techniques. Examine the results and potential applications in face verification and 3D reconstruction. Gain insights into this cutting-edge research that pushes the boundaries of generative modeling for image sets.
Syllabus
- Intro & Overview
- Problem Statement
- Architecture Overview
- Probabilistic Model
- Likelihood Function
- Model Architectures
- Loss Function & Optimization
- Results
- Conclusion
Taught by
Yannic Kilcher
Related Courses
Vibrations Of StructuresIndian Institute of Technology, Kharagpur via Swayam Finite Element Method: Variational Methods to Computer Programming
Indian Institute of Technology Guwahati via Swayam Approximation Methods
University of Colorado Boulder via Coursera Elastic Stability of Structures
Indian Institute of Technology, Kharagpur via Swayam On Gradient-Based Optimization - Accelerated, Distributed, Asynchronous and Stochastic
Simons Institute via YouTube