Sentence Similarity With Transformers and PyTorch
Offered By: James Briggs via YouTube
Course Description
Overview
Learn how to implement sentence similarity using BERT and PyTorch in this 21-minute Python tutorial. Explore the power of highly-dimensional NLP techniques as you convert sentences into vectors and measure their semantic similarity. Follow along step-by-step to tokenize sentences, create hidden state tensors, generate sentence vectors, and calculate cosine similarity. Gain practical insights into BERT's architecture and its application in natural language processing tasks.
Syllabus
Intro
BERT Base Network
Sentence Vectors and Similarity
The Data and Model
Two Approaches
Tokenizing Sentences
Creating last_hidden_state Tensor
Creating Sentence Vectors
Cosine Similarity
Taught by
James Briggs
Related Courses
Sentiment Analysis with Deep Learning using BERTCoursera Project Network via Coursera Natural Language Processing with Attention Models
DeepLearning.AI via Coursera Fine Tune BERT for Text Classification with TensorFlow
Coursera Project Network via Coursera Deploy a BERT question answering bot on Django
Coursera Project Network via Coursera Generating discrete sequences: language and music
Ural Federal University via edX