Supervised Quantile Normalization for Matrix Factorization Using Optimal Transport
Offered By: VinAI via YouTube
Course Description
Overview
Explore a seminar on supervised quantile normalization for matrix factorization using optimal transport. Delve into the speaker's recent work applying regularized optimal transport to perform "soft" sorting and ranking. Learn about the expansion of this framework to include differentiable "soft" quantile normalization operators and their application to dimensionality reduction. Discover algorithms for normalizing features with target quantile distributions to obtain matrices that are easier to factorize. Examine empirical evidence of recovery and practical applications in genomics. Gain insights from Marco Cuturi, a Google Brain researcher with extensive experience in applied mathematics, statistics, and machine learning, particularly in optimal transport and Wasserstein distances.
Syllabus
[Seminar Series] Supervised Quantile Normalization for Matrix Factorization using Optimal Transport
Taught by
VinAI
Related Courses
Optimal Transport and PDE - Gradient Flows in the Wasserstein MetricSimons Institute via YouTube Crash Course on Optimal Transport
Simons Institute via YouTube Learning From Ranks, Learning to Rank - Jean-Philippe Vert, Google Brain
Alan Turing Institute via YouTube Optimal Transport for Machine Learning - Gabriel Peyre, Ecole Normale Superieure
Alan Turing Institute via YouTube Regularization for Optimal Transport and Dynamic Time Warping Distances - Marco Cuturi
Alan Turing Institute via YouTube