Improving Pareto Front Learning via Multi-Head HyperNetwork
Offered By: VinAI via YouTube
Course Description
Overview
Explore the intricacies of multi-objective optimization and Pareto front learning in this 54-minute seminar presented by Le Duy Dung, Assistant Professor at VinUniversity. Delve into the challenges of existing Pareto front learning methods and discover a novel Multi-head HyperNetwork (MHN) architecture designed to improve the quality of obtained Pareto fronts. Learn how this approach generates multiple Pareto solutions from diverse trade-off preferences and maximizes hypervolume value to enhance performance. Gain insights into the application of this method across various machine learning tasks and its significant advantages over baseline approaches in producing high-quality Pareto fronts.
Syllabus
Seminar Series: Improving Pareto Front Learning via Multi-Head HyperNetwork
Taught by
VinAI
Related Courses
Introduction to Recommender SystemsUniversity of Minnesota via Coursera Text Retrieval and Search Engines
University of Illinois at Urbana-Champaign via Coursera Machine Learning: Recommender Systems & Dimensionality Reduction
University of Washington via Coursera Java Programming: Build a Recommendation System
Duke University via Coursera Introduction to Recommender Systems: Non-Personalized and Content-Based
University of Minnesota via Coursera