Adversarially Robust Stochastic Multi-Armed Bandits
Offered By: VinAI via YouTube
Course Description
Overview
Explore the cutting-edge research on adversarially robust stochastic multi-armed bandits in this 45-minute seminar presented by Julian Zimmert at VinAI. Delve into the world of optimal experimental design, with applications in digital advertising and website optimization. Learn about the traditional separation between stochastic and adversarial settings in bandit literature, and discover a recent breakthrough in practical all-purpose algorithms that bridge the gap between fast and robust learning. Gain insights into the challenges faced by practitioners when dealing with real-world applications that fall between purely stochastic and adversarial environments. Understand how hidden confounders and unforeseen changes can impact data distribution and affect the performance of stochastic bandit algorithms. Join this seminar to explore innovative solutions that aim to provide both fast and robust learning in multi-armed bandit problems.
Syllabus
Seminar Series: Adversarially robust stochastic multi-armed bandits
Taught by
VinAI
Related Courses
Inside TensorFlow - TF-AgentsTensorFlow via YouTube Provably Efficient Reinforcement Learning with Linear Function Approximation - Chi Jin
Institute for Advanced Study via YouTube Exploration with Limited Memory - Streaming Algorithms for Coin Tossing, Noisy Comparisons, and Multi-Armed Bandits
Association for Computing Machinery (ACM) via YouTube How Slot Machines Are Advancing the State of the Art in Computer Go AI
Churchill CompSci Talks via YouTube CS885: Multi-Armed Bandits
Pascal Poupart via YouTube