YoVDO

Self-Training With Noisy Student Improves ImageNet Classification - Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Semi-supervised Learning Courses Machine Learning Courses Image Classification Courses

Course Description

Overview

Explore a 41-minute video explaining the paper "Self-training with Noisy Student improves ImageNet classification". Learn about a novel semi-supervised learning approach that leverages unlabeled data to enhance image classification performance. Discover how the Noisy Student Training method achieves state-of-the-art accuracy on ImageNet and improves robustness on various test sets. Understand the key concepts of self-training, distillation, and noise injection in the learning process. Follow along as the video breaks down the algorithm, noise methods, dataset balancing, and results. Gain insights into perturbation robustness and ablation studies. Suitable for those interested in machine learning, computer vision, and advanced image classification techniques.

Syllabus

- Intro & Overview
- Semi-Supervised & Transfer Learning
- Self-Training & Knowledge Distillation
- Noisy Student Algorithm Overview
- Noise Methods
- Dataset Balancing
- Results
- Perturbation Robustness
- Ablation Studies
- Conclusion & Comments


Taught by

Yannic Kilcher

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent