YoVDO

Self-Classifying MNIST Digits - Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Machine Learning Courses Artificial Intelligence Courses Computational Biology Courses

Course Description

Overview

Explore a detailed explanation of a research paper on self-classifying MNIST digits using Neural Cellular Automata in this 31-minute video. Dive into how pixels in an image can communicate with each other to determine which digit they represent collectively. Learn about the challenges of applying Cross-Entropy Loss with Softmax layers and discover how the researchers developed a self-sustaining, stable algorithm modeling living systems. Gain insights into topics such as global agreement through message-passing, training continuously alive systems, out-of-distribution robustness, and visualizing latent state dimensions. Understand the implications of this research for modeling biological processes and advancing machine learning classification techniques.

Syllabus

- Intro & Overview
- Neural Cellular Automata
- Global Agreement via Message-Passing
- Neural CAs as Recurrent Convolutions
- Training Continuously Alive Systems
- Problems with Cross-Entropy
- Out-of-Distribution Robustness
- Chimeric Digits
- Visualizing Latent State Dimensions
- Conclusion & Comments


Taught by

Yannic Kilcher

Related Courses

Synapses, Neurons and Brains
Hebrew University of Jerusalem via Coursera
Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)
Moscow Institute of Physics and Technology via Coursera
Bioinformatics Algorithms (Part 2)
University of California, San Diego via Coursera
Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera
Neuronal Dynamics
École Polytechnique Fédérale de Lausanne via edX