Gravitational Wave Parameter Estimation with Compressed Likelihood Evaluations
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Syllabus
Intro
Gravitational wave datasets
Bayesian inference of GW datasets
Likelhood computations are too slow
Parameter estimation challenges
Approaches to faster PE (non-exhausthe list)
Reduced order quadratures (ROQS) in use
Outline
Numerical integration (quadrature)
Do I need a low-order quadrature rule for noisy data?
Probler Formulation
Step 1: Compressing the model
Best approximation space X
Example basis generation
Waveform compression application (ex: 1.2040)
Summary of step 1
Where are the good points for integrating in X.?
Empirical interpolation method
Example: Points for polynomial interpolation integratior
The ROQ approximation
Using ROQ
Building ROQ
Startup a signal has been detected!
How much faster?
Accelerating tests of GR
BNS events with third generation observatories
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Analyse numérique pour ingénieursÉcole Polytechnique Fédérale de Lausanne via Coursera Matlab Programming for Numerical Computation
Indian Institute of Technology Madras via Swayam Métodos numéricos para matemáticas con Octave
Universitat Politècnica de València via edX Computational Electromagnetics
Indian Institute of Technology Madras via Swayam Computational Physics
Indian Institute of Science Education and Research, Pune via Swayam