Constructing Polylogarithms on Higher-Genus Riemann Surfaces
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore the generalization of the Brown-Levin construction of elliptic polylogarithms to Riemann surfaces of arbitrary genus in this advanced mathematics lecture. Delve into the generation of homotopy-invariant iterated integrals on higher-genus surfaces using a flat connection with simple poles in two marked points. Examine the integration kernels of the flat connection, composed of modular tensors built from convolutions of the Arakelov Green function and its derivatives with holomorphic Abelian differentials. Learn how these convolutions reproduce the Kronecker-Eisenstein kernels of elliptic polylogarithms and modular graph forms at genus one. Gain insights into ongoing research on the relationships between higher-genus polylogarithms of Enriquez-Zerbini and tensorial generalizations of Fay identities among the presented integration kernels.
Syllabus
Schlotterer: Constructing polylogarithms on higher-genus Riemann surfaces
Taught by
Hausdorff Center for Mathematics
Related Courses
Randomness in Number TheorySimons Institute via YouTube The Unbounded Denominators Conjecture - Yunqing Tang
Institute for Advanced Study via YouTube An Interview with Neal Koblitz - Elliptic Curve Cryptography and Beyond
Bill Buchanan OBE via YouTube Symmetry, Almost
Joint Mathematics Meetings via YouTube Quantum Complexity and L-functions
Fields Institute via YouTube