Quantitative Bounds in the Polynomial Szemerédi Theorem and Related Results
Offered By: BIMSA via YouTube
Course Description
Overview
Explore a 51-minute conference talk by Sarah Peluse at BIMSA on quantitative bounds in the polynomial Szemerédi theorem and related results. Delve into Bergelson and Leibman's polynomial generalization of Szemerédi's theorem, which states that subsets of {1,...,N} without nontrivial progressions x, x+P_1(y), ..., x+P_m(y) must satisfy |A|=o(N), where P_1,...,P_m are polynomials with integer coefficients and zero constant term. Examine the challenges in obtaining explicit bounds for the o(N) term in this theorem, unlike in Szemerédi's original theorem. Learn about recent advancements in proving a quantitative version of the polynomial Szemerédi theorem and related problems in additive combinatorics, harmonic analysis, and ergodic theory.
Syllabus
Sarah Peluse: Quantitative bounds in the polynomial Szemerédi theorem and related results #ICBS2024
Taught by
BIMSA
Related Courses
Measure Theory - IMScIMSC via Swayam Chance and Chaos - How to Predict the Unpredictable by Jens Marklof
International Centre for Theoretical Sciences via YouTube Commensurators of Thin Subgroups
International Centre for Theoretical Sciences via YouTube Lyapunov Exponents, From the 1960's to the 2020's by Marcelo Viana
International Centre for Theoretical Sciences via YouTube Noncommutative Ergodic Theory of Higher Rank Lattices
International Mathematical Union via YouTube