An Introduction to Auxiliary Polynomials in Transcendence Theory - Lecture III
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Delve into the third lecture of a series on auxiliary polynomials in transcendence theory, presented by Samit Dasgupta at the Hausdorff Center for Mathematics. Explore the fascinating world of transcendence theory, which investigates the rationality and algebraicity properties of arithmetic and analytic quantities. Learn about the historical context, including Hilbert's 7th problem and its resolution by Gelfond and Schneider. Discover Baker's groundbreaking generalization of this result, which uses auxiliary polynomials to prove linear dependence of logarithms of algebraic numbers. Examine the structural rank conjecture and the significant contributions of Masser and Waldschmidt in providing lower bounds for the rank of logarithmic matrices. Gain insights into complex analysis and commutative algebra techniques used throughout the course. This 64-minute lecture offers an in-depth exploration of advanced mathematical concepts and their applications in transcendence theory.
Syllabus
Samit Dasgupta: An introduction to to auxiliary polynomials in transcendence theory, Lecture III
Taught by
Hausdorff Center for Mathematics
Related Courses
Introduction to Mathematical ThinkingStanford University via Coursera Effective Thinking Through Mathematics
The University of Texas at Austin via edX Cryptography
University of Maryland, College Park via Coursera Математика для всех
Moscow Institute of Physics and Technology via Coursera Number Theory and Cryptography
University of California, San Diego via Coursera