YoVDO

Should We Use Parameterized Quantum Circuits for Machine Learning?

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Quantum Computing Courses Machine Learning Courses Algorithm Analysis Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the potential and limitations of parameterized quantum circuits (PQCs) for machine learning in this one-hour conference talk by Ryan Sweke from IBM Research, Almaden. Delve into the ongoing debate surrounding the use of PQCs in machine learning tasks and examine evidence both for and against specific PQC-based algorithms. Investigate the challenges of learning output distributions from local quantum circuits and their implications for quantum circuit born machines. Shift focus to supervised learning and analyze the extent to which popular PQC-based algorithms can be dequantized using classical kernel regression with random Fourier features. Gain insights into the current state of quantum machine learning and its potential advantages over classical methods.

Syllabus

Ryan Sweke - Should we use parameterized quantum circuits for machine learning? - IPAM at UCLA


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent