RWKV- Reinventing RNNs for the Transformer Era
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore an in-depth analysis of the Receptance Weighted Key Value (RWKV) model, a groundbreaking architecture that bridges the gap between Transformers and Recurrent Neural Networks (RNNs). Delve into the evolution of linear attention mechanisms, RWKV's layer structure, and its ability to combine efficient parallelizable training with streamlined inference. Examine experimental results, limitations, and visualizations that demonstrate RWKV's performance compared to similarly sized Transformers. Gain insights into this innovative approach that reconciles computational efficiency and model performance in sequence processing tasks, potentially shaping the future of natural language processing.
Syllabus
- Introduction
- Fully Connected In-Person Conference in SF June 7th
- Transformers vs RNNs
- RWKV: Best of both worlds
- LSTMs
- Evolution of RWKV's Linear Attention
- RWKV's Layer Structure
- Time-Parallel vs Sequence Mode
- Experimental Results & Limitations
- Visualizations
- Conclusion
Taught by
Yannic Kilcher
Related Courses
الشبكات العصبية والتعلم العميقDeepLearning.AI via Coursera Machine Learning: Create a Neural Network that Predicts whether an Image is a Car or Airplane.
Coursera Project Network via Coursera Neural Network Programming - Deep Learning with PyTorch
YouTube Computer Vision with GluonCV (Traditional Chinese)
Amazon Web Services via AWS Skill Builder Neuronales Netz von Scratch
Coursera Project Network via Coursera