YoVDO

High Dimensional Expanders

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

High Dimensional Expanders Courses Theoretical Computer Science Courses Expander Graphs Courses Algebraic Topology Courses

Course Description

Overview

Explore high-dimensional expanders in this lecture from the Hausdorff Trimester Program on Applied and Computational Algebraic Topology. Delve into two key notions of expansion: coboundary expansion and spectral expansion. Examine their differences in higher dimensions, despite equivalence in the graphical case. Investigate the existence and construction of high-dimensional expanders, estimate expansion in common complexes, and uncover combinatorial and geometric implications. Cover topics such as simplicial cohomology, random complexes, homological connectivity, weighted expansion, topological overlap property, expander graphs and complexes, Latin square complexes, harmonic cochains, and the relationship between eigenvalues and cohomology. Gain insights into this growing field of research with applications in mathematics and theoretical computer science.

Syllabus

Intro
Graphical Spectral Gap
High Dimensional Expansion
Simplicial Cohomology
Expansion of a Complex
A Model of Random Complexes
Homological Connectivity of Random Complexes
Weighted Expansion
The Topological Overlap Property
Topological Overlap and Expansion
Expander Graphs
Expander Complexes
The Complete 3-Partite Complex
Latin Square Complexes
Random Latin Squares Complexes
Large Deviations for Latin Squares
Harmonic Cochains
Eigenvalues and Cohomology
Flag Complexes


Taught by

Hausdorff Center for Mathematics

Related Courses

Introduction to Algebraic Topology (Part-I)
Indian Institute of Technology Bombay via Swayam
Introduction to Algebraic Topology (Part-II)
NPTEL via Swayam
Intro to the Fundamental Group - Algebraic Topology with Tom Rocks Maths
Dr Trefor Bazett via YouTube
Neural Sense Relations and Consciousness - A Diagrammatic Approach
Models of Consciousness Conferences via YouTube
Classification of 2-Manifolds and Euler Characteristic - Differential Geometry
Insights into Mathematics via YouTube